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Abstract— We explore a model-based approach to reinforce-
ment learning where partially or totally unknown dynamics
are learned and explicit planning is performed. We learn
dynamics with neural networks, and plan behaviors with
differential dynamic programming (DDP). In order to handle
complicated dynamics, such as manipulating liquids (pouring),
we consider temporally decomposed dynamics. We start from
our recent work [1] where we used locally weighted regression
(LWR) to model dynamics. The major contribution of this
paper is making use of deep learning in the form of neural
networks with stochastic DDP, and showing the advantages
of neural networks over LWR. For this purpose, we extend
neural networks for: (1) modeling prediction error and output
noise, (2) computing an output probability distribution for a
given input distribution, and (3) computing gradients of output
expectation with respect to an input. Since neural networks
have nonlinear activation functions, these extensions were not
easy. We provide an analytic solution for these extensions
using some simplifying assumptions. We verified this method
in pouring simulation experiments. The learning performance
with neural networks was better than that of LWR. The
amount of spilled materials was reduced. We also present early
results of robot experiments using a PR2. Accompanying video:
https://youtu.be/aM3hE1J5W98

I. INTRODUCTION

Deep learning is a powerful framework, and has been
successful in image classification [2], object detection [3],
pose estimation [4], and other areas. There is great interest
in applying deep learning to robotic applications, especially
reinforcement learning problems, i.e. learning behaviors with
partially or totally unknown dynamics. There are some
attempts [5], [6], but this is still an open problem.

We explore learning dynamics with neural networks, and
applying differential dynamic programming (DDP) to plan
behaviors. Recently we considered temporally decomposed
dynamics of a complicated task like pouring [7], modeled
them with locally weighted regression (LWR), and applied
DDP [1]. This method was verified in simulation experiments
of pouring, where the robot controlled a complicated flow to
achieve pouring. The contribution of [1] was showing that
learning decomposed dynamics and applying stochastic DDP
is a promising solution to reinforcement learning problems,
even in domains with complicated dynamics. By introduc-
ing deep neural networks into this framework, we expect:
(A) better modeling accuracy, and (B) automatic feature
selection.

In order to make use of neural networks with stochastic
DDP, we need extensions for: (1) modeling prediction error
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and output noise, (2) computing an output probability dis-
tribution for a given input distribution, and (3) computing
gradients of output expectation with respect to an input.
Since neural networks have nonlinear activation functions,
these extensions were not easy. In this paper we provide an
analytic solution for these extensions using some assump-
tions for simplification.

We verified our method in simulation experiments of
pouring similar to those in [1]. Our stochastic DDP with
extended neural networks outperformed the LWR version.
When training with many samples, there was a small amount
of spilled materials in the LWR version. This was reduced
with the neural networks version. In addition, we used
redundant and/or non-informative state representations to
investigate the feature extraction ability of (deep) neural
networks. Although the state dimensionality changed from
16 to 47, the learning performance was preserved. We
also conducted preliminary robot experiments using a PR2.
Although the number of the experiments is not sufficient,
we obtained encouraging results. From the simulator results,
we think that learning dynamics with deep neural networks
and planning with stochastic DDP is a promising solution to
reinforcement learning problems. Furthermore, the extended
neural network is a general-purpose function approximator
and could be applied to learning various models used in
robotics such as dynamics and kinematics.

Related Work

There are two main approaches for reinforcement learn-
ing (RL) problems: a model-free approach and a model-
based approach. In recent robotics research, the model-free
approach seems to be more successful, for example in a
ball-in-cup task [8], flipping a pancake [9], and a crawling
motion [10]. A disadvantage of model-free methods is the
poor generalization ability compared to that of model-based
methods. Several attempts have been made to overcome this
issue [11], [12].

In a model-based method, dynamics of the system are
learned, and then planning, such as differential dynamic pro-
gramming (DDP) [13], is used. Although there are successful
examples, such as [14], [15], this approach seems not popular
in RL for robotics, since (1) we need to gather many samples
to construct dynamics models, and (2) we need to solve two
problems, model learning and planning.

However we think that the model-based approach has
a large potential since learning dynamics would be more
robust than model-free RL because it is supervised learning,
and recently many good optimal control methods to solve
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Fig. 1. Neural network architecture used in this paper. It has two networks
with the same input vector. The top part estimates an output vector, and the
bottom part models prediction error and output noise. Both use ReLU as
activation functions.

dynamic programming have been proposed (e.g. [16], [17]).
Recently Pan and Theodorou proposed a method: learning
dynamics models with a Gaussian process and applying
stochastic DDP [18]. We explore neural networks to model
complicated dynamics.

There are several examples of reinforcement learning
methods using neural networks, such as neural fitted Q itera-
tion [19], and deep Q-learning [5]. These methods use a value
function based approach to RL with neural networks. Deep
Q-learning [5] makes use of the ability of deep networks,
namely, automatically learning features from images, but
would not be appropriate to learn behaviors with continuous
control signals. This method is using a discrete set of actions
like conventional RL methods [20]. Another approach is [12],
[6] where a trajectory optimization method was combined
with a local linear model learned from samples, and trained
neural network polices to increase generalization.

Another example of using neural networks in robot control
is [21] where a forward kinematics model between pneumatic
actuator displacements and feature point positions on an
android robot face was learned with neural networks, and
its inverse problem was solved with an optimizer. Although
the input and output dimensions were large (11 and 54
respectively), their method achieved an accurate inverse
kinematics controller of the android face.

In Section II we propose extensions of neural networks.
In Section III we describe our stochastic DDP. Section IV
describes the simulation, Section V describes the robot ex-
periments, and Section VI concludes the paper.

II. NEURAL NETWORKS FOR REGRESSION WITH
PROBABILITY DISTRIBUTIONS

We explore extensions of neural networks for: (1) mod-
eling prediction error and output noise, (2) computing an
output probability distribution for a given input distribution,
and (3) computing gradients of output expectation with re-
spect to an input. Typical approaches for (2) are: (A) solving
analytically, (B) approximating the neural networks with
a local linear or quadratic model, and (C) computing nu-
merically with random sampling. (A) is not easy since
neural networks include nonlinear activation functions, (B)
becomes inaccurate especially when learning a model with

discrete changes such as a step function, and (C) has a large
computation cost. We consider some assumptions to simplify
(A).

A. Definitions and Assumptions

We consider a neural network with rectified linear units
(ReLU; frelu(x) = max(0, x) for x ∈ R) as activation
functions. Based on our preliminary experiments with neural
networks for regression problems, using ReLU as an acti-
vation function was the most stable and obtained the best
results. Fig. 1 shows the neural network architecture used in
this paper. For an input vector x, the neural network models
an output vector y with y = F(x), defined as:

h1 = f relu(W1x+ b1), (1)
h2 = f relu(W2h1 + b2), (2)
. . .

hn = f relu(Wnhn−1 + bn), (3)
y = Wn+1hn + bn+1, (4)

where hi is a vector of hidden units at the i-th layer, Wi

and bi are parameters of a linear model, and f relu is an
element-wise ReLU function.

Even when an input x is deterministic, the output y
might have error due to: (A) prediction error, i.e. the error
between F(x) and the true function, caused by an insufficient
number of training samples, insufficient training iterations,
or insufficient modeling ability (e.g. small number of hidden
units), and (B) noise added to the output. We do not
distinguish (A) and (B). Instead, we consider additive noise
y = F(x) + ξ(x) where ξ(x) is a zero-mean normal
distribution N (0,Q(x)). Note that since the prediction error
changes with x and the output noise might change with x, Q
is a function of x. In order to model Q(x), we use another
neural network ∆y = ∆F(x) whose architecture is similar
to F(x), and approximate Q(x) = diag(∆F(x))2 where
diag is a diagonal function1. ∆y is an element-wise absolute
error between the training data y and the prediction F(x).

When x is a normal distribution N (µ,Σ), our purpose
is to approximate E[y] and cov[y]. The difficulty is the
use of the nonlinear ReLU operators f relu(p). We use the
approximation that when p is a normal distribution, f relu(p)
is also a normal distribution. We also assume that this
computation is done in an element-wise manner, that is, we
ignore non-diagonal elements of cov[p] and cov[f relu(p)].
Although the covariance Q(x) depends on x, we consider
its MAP estimate: Q(µ).

B. Expectation

Let us consider y = F(x) + ξ(x) where ξ(x) ∼
N (0,Q(x)). For x ∼ N (µ,Σ),

E[y] = E[F(x) + ξ(x)] = E[F(x)], (5)
cov[y] = cov[F(x) + ξ(x)] = cov[F(x)] + cov[ξ(x)]

= cov[F(x)] +Q(µ). (6)

1We use diag for two meanings: exploiting diagonal elements as a vector
from a matrix, and converting a vector to a diagonal matrix.



Since Q(µ) = diag(∆F(µ))2, the difficulty is computing
E[F(x)] and cov[F(x)]. We solve these step by step.

The expectation and covariance of a linear function for an
input p ∼ N (µp,Σp) are:

E[Wp+ b] = Wµp + b, (7)

cov[Wp+ b] = WΣpW
⊤. (8)

The expectation and covariance of the ReLU function for
an input p ∼ N (µp,Σp) where Σp is a diagonal matrix are:

E[f relu(p)] = Erelu(µp,Σp), (9)

cov[f relu(p)] = Vrelu(µp,Σp), (10)

where Erelu is an element-wise expectation of ReLU, and
Vrelu is a diagonal matrix of corresponding variances. For
µp = [µp1, µp2, . . . ]

⊤ and Σp = diag[σ2
p1, σ

2
p2, . . . ], each

element of Erelu(µp,Σp) and Vrelu(µp,Σp) is given by:

E[frelu(pi)] =

∫ ∞

−∞
max(0, pi)G(pi;µpi, σ

2
pi)dpi

=
σpi√
2π

X +
µpi

2
(1 + E), (11)

var[frelu(pi)]

=

∫ ∞

−∞
(max(0, pi)− E[frelu(pi)])

2G(pi;µpi, σ
2
pi)dpi

=
1

4
µ2
pi(1− E2) +

σ2
pi

2
(1 + E − X2

π
)− σpiµpiXE√

2π
, (12)

where G is a Gaussian function, X = exp(− µ2
pi

2σ2
pi
), E =

erf(
µpi√
2σpi

), and erf is an error function. Derivations are
described in the appendix.

The expectation and covariance of each layer’s output for
an input p ∼ N (µp,Σp) are:

E[f relu(Wp+ b)] = Erelu(Wµp + b, diag(WΣpW
⊤)), (13)

cov[f relu(Wp+ b)] = Vrelu(Wµp + b, diag(WΣpW
⊤)).

(14)

Thus the probability distribution of each hidden layer
hi ∼ N (µi,Σi) is given by: µi = Erelu(Wiµi−1 +

bi, diag(WiΣi−1W
⊤
i )), and Σi = Vrelu(Wiµi−1 +

bi, diag(WiΣi−1W
⊤
i )), where µ0 = µ and Σ0 = Σ (mean

and covariance of input x). We compute from i = 1 to n, and
obtain hn ∼ N (µn,Σn). Since the final activation function
is linear F(hn) = Wn+1hn + bn+1, we use Eq. (7), (8).
Finally assigning them into Eq. (5), (6), we obtain

E[y] = Wn+1µn + bn+1, (15)

cov[y] = Wn+1ΣnW
⊤
n+1 +Q(µ). (16)

C. Gradient

The gradient of element-wise ReLU f relu(p) is given by:

∂f relu(p)

∂p
= diag(f step(p)), (17)

where f step is an element-wise step function (1 if p is
positive, and 0 otherwise). Thus the gradient ∂y

∂x for a

deterministic x is obtained by:

∂y

∂x
=

∂h1

∂x

∂h2

∂h1
· · · ∂hn

∂hn−1

∂y

∂hn
, (18)

where ∂hi

∂hi−1
= W⊤

i diag(f step(Wihi−1+bi)), h0 = x, and
∂y
∂hn

= W⊤
n+1.

For x ∼ N (µ,Σ), we use ∂E[y]
∂µ as a gradient for the

distribution of x. This gradient takes a similar form as above.
For N (µp,Σp) (Σp is a diagonal matrix), the gradient of
Erelu(µp,Σp) w.r.t. µp is given by:

∂Erelu(µp,Σp)

∂µp

= diag(f̃ step(µp,diag(Σp))), (19)

where f̃ step is an element-wise function similar to f step. For
µp = [µp1, µp2, . . . ]

⊤ and Σp = diag[σ2
p1, σ

2
p2, . . . ], each

element of f̃ step is given by:

f̃step(µpi, σpi) =
1

2
(1 + E), (20)

where E = erf(
µpi√
2σpi

). Thus the gradient of E[y] w.r.t. µ is
given by:

∂E[y]

∂µ
=

∂µ1

∂µ

∂µ2

∂µ1

· · ·
∂µn

∂µn−1

∂E[y]

∂µn

, (21)

∂µi

∂µi−1

= W⊤
i diag(f̃ step(Wiµi−1 + bi, diag(WiΣi−1W

⊤
i ))),

(22)

where µ0 = µ, Σ0 = Σ, and ∂E[y]
∂µn

= W⊤
n+1.

D. Loss Function for the Error Model

The neural networks F(x) and ∆F(x) are trained with
a data set {x,y}. F(x) learns to predict from x to y, and
∆F(x) learns to predict from x to ∆y. First we train F(x),
and generate an error data set {∆y} = {fabs(y − F(x))}
where fabs is an element-wise absolute value function. {∆y}
is a set of positive value vectors. We expect ∆F(x) predicts
the envelope of {∆y}. For this purpose, using a standard
mean squared error is not adequate since the obtained curve
will be around the middle of the data. Thus we use a different
loss function to train ∆F(x), given by:

L =
1

ND

N∑
n=1

D∑
d=1

(max(0,∆ynd −∆Fd(xn))
2

+ βmin(0,∆ynd −∆Fd(xn))
2), (23)

where N is the number of training samples, and D is
the number of output dimensions. The positive error and
the negative error are summed with a different weight β,
0 < β < 1. A typical value of β is 0.1. With this loss
function, the obtained curve shifts to a positive envelope.

E. Example

Fig. 2 shows the ReLU function, Erelu(x, 1) and
Erelu(x, 1) ±

√
Vrelu(x, 1), and the numerically computed

expectation of ReLU with the variance 1.
Fig. 3 shows an example of learning a step function with

neural networks. We used two hidden layers; each hidden



Fig. 2. Expectation of ReLU.

Fig. 3. Learning a step function.

layer has 200 units. We used dropout [22] for each output
of the hidden layers during training where the dropout prob-
ability is 0.01. The dropout probability for regression works
better if it is smaller. In classification, typically 0.5 is used,
but such a large value is problematic in regression. Srivastava
et al. [22] analyzed the dropout in linear regression: “dropout
with linear regression is equivalent, in expectation, to ridge
regression”. Thus we chose 0.01. For training, we used
100 samples with adding a uniform random noise between
[−0.1, 0.1]. In Fig. 3, we are comparing the original step
function, samples for training, the neural network predictions
for N (x, 0) (there is variance of y because of the prediction
error model), and the predictions for N (x, 0.52). The gradi-
ents of each prediction are also plotted.

Fig. 4 shows an example of learning a linear function
y = 0.5x with neural networks. In this example, we used
output noise changing with x: a uniform random noise
between [−1, 1] for |x| < 2, and a uniform random noise
between [−0.25, 0.25] for other x. We used two hidden
layers; each hidden layer has 200 units. We used the dropout
with probability 0.01 for training. The above graph of Fig. 4
shows F (x) (x is a deterministic variable), and the graph
below shows ∆F (x).

III. STOCHASTIC DIFFERENTIAL DYNAMIC
PROGRAMMING

We use the same differential dynamic programming (DDP)
that we used in [1]. This DDP is stochastic; that is, we
consider probability distributions of states and expectations
of rewards. This design of evaluation functions is similar to

Fig. 4. Learning y = 0.5x with output noise depending on x.

Fig. 5. Temporal decomposition considered in this paper. The dotted box
denotes the whole process.

recent DDP methods (e.g. [18]). On the other hand, we use a
simple gradient descent method to optimize actions2, while
traditional DDP [13] and recent methods (e.g. [16], [17],
[18]) use a second-order algorithm like Newton’s method. In
terms of convergence speed, our DDP is inferior to second-
order DDP algorithms. The quality of the solution would
be the same as far as we use the same evaluation function.
Our algorithm is easier to implement. Since we use learned
dynamics models, there should be more local optima than
when using analytically simplified models. In order to avoid
poor local maxima, our DDP uses a multiple criteria gradient
descent method3.

We consider a system with N decomposed processes
illustrated in Fig. 5. The input of the n-th process is a state
xn and an action an, and its output is the next state xn+1.
Note that some actions may be omitted. A reward is given
to the outcome state. Let Fn denote the process model:
xn+1 = Fn(xn,an), and Rn denote the reward model:
rn = Rn(xn). Typically the most important reward is the
final reward RN (xN ) and Rn(xn) = 0 for n < N , but we
consider a general form Rn(xn) so that we can give rewards
(or penalties) for intermediate states. We assume that every
state is observable.

Each dynamics model Fn is learned from samples with the
neural networks mentioned in this paper where the prediction

2It works with any gradient descent methods.
3More specifically, in our DDP, we maintain “reference states” which are

optimized by ignoring dynamics constraints. These reference states are used
to create reference value functions. In our multiple criteria gradient descent
method, we switch the evaluation functions in these value functions and the
original one. Additionally, we also use multiple gradients computed from
these value functions and the original evaluation function, which are useful
to avoid local optima. See [1] for more details.



Fig. 6. Simulation environment. Right figure is after pouring material.

error is also modeled. At each step n, a state xn is observed,
and then an action an is planned with DDP so that an
evaluation function Jn(xn, {an, . . . ,aN−1}) is maximized.
Jn is an expected sum of future rewards, defined as follows:

Jn(xn, {an, . . . ,aN−1}) = E[
∑N

n′=n+1 Rn′(xn′)]

=
∑N

n′=n+1 E[Rn′(xn′)]. (24)

In the DDP algorithm, first we generate an initial set of ac-
tions. Using this initial guess, we can predict the probability
distributions of future states with the neural networks. The
expected rewards are computed accordingly. Then we update
the set of actions iteratively with a gradient descent method.
In these calculations, we use the extensions of the neural
networks described in this paper to compute the expectations,
covariances, and the gradients. Thus we can replace LWR in
[1] by the neural networks, and apply our DDP.

IV. SIMULATION EXPERIMENTS

We verify our method in simulated experiments. The
problem setup is the same as in [1]. In Open Dynamics
Engine [23], we simulate source and receiving containers,
poured material, and a robot gripper grasping the source
container (Fig. 6).

The materials are modeled with many spheres, simulat-
ing the complicated behavior of material such as tomato
sauce during shaking. There are three typical failure cases:
(1) pushed the receiving container, (2) materials bounced
out, and (3) poured at wrong place. Note that even if we
use the same parameters in the same initial condition, the
result varies (we are not adding random noise); e.g. in a
case where the materials spill out of the receiving container,
but in another case there are no spilled materials. Thus
the dynamics is complicated as in real pouring, and the
simulation itself is a probabilistic process probably due
to contact simulation effects and/or process communication
delay (the simulator and the DDP program are connected
over ROS).

We use the same state machines for pouring as those
in [1], which are a simplified version of [7]. Those state
machines have some parameters: a grasping height and
pouring position. Those parameters are planned with DDP.

There are five separate processes. The initial or 0th state:
before grasping. x0: x and y positions of the receiving
container, a0: the grasping position. The 1st state: after
grasping. x1: x and y position of the receiving container, and
actual grasped position, a1: x and y position of the pouring

(a) Sum of rewards per episode.

(b) Penalty of spill per episode (y-axis is reversed).

Fig. 7. Learning curves of on-line learning. Moving average filter with 15
episode window is applied.

location. The 2nd state: after moving to the pouring location,
and before the flow control. x2: x and y displacement of the
receiving container, the speed of the receiving container, and
the actual pouring location relative to the receiving container,
a2: no action. The 3rd state: after the flow control. x3: the
average flow center (x and y), the flow variance, and z-
coordinate of the pouring location. a3: no action. The 4th
state: after pouring. x4: the amount of materials poured in
the receiving container (arcv), and the amount of spilled
materials (aspill). The reward consists of the amount arcv,
the spilled penalty −aspill, and the penalty for the movement
of the receiving container given at x2.

A. Comparison of Models in On-line Learning

We compare LWR and neural networks as the models of
processes. Each LWR uses the same configuration as in [1].
Each neural network has three hidden layers; each hidden
layer has 200 units. We use dropout [22] for each output of
hidden layers during training where the dropout probability
is 0.01.

We apply the learning framework of [1] in an on-line
manner. After each state observation, we train the neural
networks, and plan actions with the models. In the early stage
of learning, we gather three samples with random actions,
and after that we use DDP.

We compared a method using LWR (LWR-Sum/Grad)
and one using neural networks (DNN-Sum/Grad). Fig. 7(a)
shows the average learning curves of 10 trials, and Fig. 7(b)
shows the penalty of spillage. DNN-Sum/Grad is better than
LWR-Sum/Grad. The difference in the learning curves is



Fig. 8. Learning curves of on-line learning. Moving average filter with 15
episode window is applied.

mainly due to the penalty of spillage; the amount of spilled
material is smaller in DNN-Sum/Grad. Since the dynamics
of flow in our simulation model is very complicated, there
was a small amount of spilled material even after the
dynamics model is learned. This spilled amount is reduced
when using neural networks, which indicates that the neural
networks has a better ability to learn dynamics than LWR.

B. Using Redundant States

In the previous experiments, we used carefully selected
states. Since we can expect automatic feature extraction with
(deep) neural networks, we test alternative state vectors that
have redundant and/or non-informative elements. Specifi-
cally, instead of the pose of the receiving container, we use
four corner points on its mouth (x, y, z respectively). We also
use the y-coordinate of the pouring position. Since we do not
use the pose of the receiving container, the relative position
of the flow center is computed with respect to the center of
the four corner points. Consequently the dimensions of the
state vectors x0, . . . , x4 are changed from (2, 3, 5, 4, 2) to
(12, 13, 16, 4, 2) respectively.

We used the same configuration as well as structure of
hidden layers. Fig. 8 shows the average learning curves of
10 trials where the previous result (DNN-Sum/Grad) is
plotted together with DNN-Sum/Grad X+ that uses the
expanded states. The learning curves of the two conditions
are almost the same. This result indicates that although
the total dimensionality changed from 16 to 47, the neural
networks could extract the features as we expected. The
two learning curves also show that the learning speeds are
almost the same. The reason would be that the complexities
of the dynamics are the same although the dimensionalities
are different.

V. PRELIMINARY ROBOT EXPERIMENTS

We apply the method to a pouring task of a PR2 robot.
Although the current results are preliminary, we think these
are valuable to mention in this paper.

This task is a simplified version of [7]. Fig. 9 shows
the setup. The robot starts pouring from an initial state
shown in the figure with holding a source container. The
position of the receiving container changes in each episode;
a human operator places the container differently before each

Fig. 9. Setup of the robot experiments.

pouring episode. The position of the receiving container
is measured by an external RGB-D sensor. First, the pose
of the AR-marker is measured. Then the base cylinder of
the receiving container is searched around the AR-marker
position. We use a template matching method with rendered
depth and surface-normal images using a ray-tracing method.
The robot plans a collision-free trajectory to reach a pouring
location, and executes flow control. Here we use only a
shaking skill for flow control (flow control with tipping does
not work in this case since the material jams inside the
container). Two RGB cameras are used to measure the flow,
the movement of the receiving container during the flow
control, the amount of materials poured into the receiving
container, and the amount of spilled materials. For the flow,
we use the Lucas-Kanade method [24] to obtain optical flow.
Then we compute the current flow amount, the flow center
position, an average flow position, and the flow variance
during flow control. The movement of the receiving container
is measured by detecting colors; for this purpose, the base
cylinder of the container is colored pink. The amount of
materials is measured by simple color detection; for this
purpose we use blue-colored materials. In order to decide
that the materials are poured into the container or spilled
out, we refer to the receiving container position measured
by color detection. The two cameras measure these data
independently. One is used as the x-axis data, and the other
is used as the y-axis data. The human operator also modifies
the camera positions when placing the receiving container to
adjust visual measurements. After pouring a target amount,
the robot moves the arm back to the initial pose.

The whole behavior is modeled with state machines.
In this scenario, the robot plans a feasible pouring loca-
tion, feasible trajectories, and shaking parameters (“feasible”
means collision-free and IK-solvable). Although our final
goal is solving those plans under a single framework, in this
experiment we combine a classic method and the method
proposed in this paper. DDP plans parameters that are hard to
decide without learning the dynamics. The other parameters
are planned using a classic method. For the pouring location,
our DDP plans the z-coordinate and the distance from the
receiving container’s center. Other parameters (e.g. the orien-
tation of the source container) are decided by an optimization
with CMA-ES [25]. Here the evaluation function takes a
better value if the source container is closer to the left
side of the receiving container, and if the pose is feasible.
Refer to [7] for the details of this optimization. The feasible



trajectories are also planned with CMA-ES as mentioned in
[7]. DDP also plans the amplitude of the shaking motion.
We use a fixed shaking direction.

Planning with CMA-ES considers only a partial situation,
while DDP plans the policy parameters considering the entire
pouring process. We consider three decomposed processes
for DDP. The initial or 0th state: at the initial state. x0: the
position of the receiving container in the robot frame, a0: the
pouring location parameters. The 1st state: after moving the
source container to the pouring location and before the flow
control. x1: the actual position of the pouring location, and
the position of the receiving container in the robot frame, a1:
the shaking amplitude. The 2nd state: at the end of the flow
control. x2: the movement of the receiving container in the
camera frame, the average flow position in the camera frame
(relative to the the receiving container position), and the flow
variance; the data from two cameras is used, a2: no action.
The 3rd state: at the end of the pouring. x3: the amount of
materials poured in the receiving container (arcv), and the
amount of spilled materials (aspill). The reward is mainly
given to (1−5(0.1−arcv))−100aspill where 0.1 is the target
amount. We use this small target amount in order to reduce
the experiment time. A penalty is given to the movement of
the receiving container at x2.

We conducted three runs with 38, 39, and 69 episodes
respectively. For the first two runs we used dry peas colored
blue, and for the third run we used blue plastic beads.
Fig. 10(a), 10(b), 10(c) show the learning curves where the
sum of rewards, the poured amount, and the spilled amount
are plotted per episode respectively. The sum of rewards is
improved with episodes. From Fig. 10(b) and 10(c) we can
see a strategy of the robot. After 10 episodes, the poured
amount curve is gradually decreasing in average. On the
other hand, between 0th to 20th episodes, the spilled amounts
are relatively large compared to the later part. Thus the robot
first tried actions that produced a large amount, and then
the robot adjusted the actions so that the spilled amount
is reduced. This tendency would be changed by modifying
the weights of poured and spilled amounts in the reward
function.

Fig. 11 shows part of the dynamics learned with neural
networks. The graphs in Fig. 11 show the prediction from
x2 to the reward for the poured and the spilled amounts.
Since x2 has eight elements, only two elements are varied,
and the median values of the samples are used for the other
elements. From the 3D plot (a), we can see the samples are
noisy, and there are some outliers. From the top view of the
same graph (b), we can see a peak is located where the flow-y
is around zero and the flow-x is around −0.1. Since the flow
position is a relative value from the receiving container, this
result is almost correct. On the other hand, the graph (c) is
different from what we expected. The peak should be located
where the flow-y is zero and the flow variance is also close
to zero, but actually the peak is at a different position. Since
DDP is used with the dynamics where (b) and (c) (and other
not plotted elements) are unified, the problem in (c) is not
a big issue now. However this might be a potential problem

(a) Sum of rewards per episode.

(b) Poured amount per episode.

(c) Spilled amount per episode.

Fig. 10. Learning curves (mean±1-SD) of the robot experiment. Moving
average filter with 5 episode window is used.

Fig. 11. Plot of the part of dynamics models. The predictions from x2

to the reward for the poured and the spilled amounts are plotted. (a) and
(b) are plots over the flow position (x and y). (c) is a plot over the flow
y-position and the flow y-variance. (b) and (c) also show the contours where
the reference states used in our DDP are also plotted. (zoom in using your
PDF viewer)

in future.
Conducting better-controlled experiments is planned for

future work. In the above experiments, the manual placement
of the RGB cameras might produce noise although the
stochastic extensions of neural networks could handle them.
This should be improved. We also consider comparing neural
networks with LWR and other function approximators in
robot experiments as well as variations of neural networks
such as different activation functions.



VI. CONCLUSION

As a model-based reinforcement learning method, we ex-
plored learning dynamics with neural networks and applying
differential dynamic programming (DDP) to plan behaviors.
Based on our recent work [1] where we used locally weighted
regression to model temporally decomposed dynamics, we
made use of neural networks with stochastic DDP. For this
purpose, we extended neural networks with ReLU activation
functions in terms of probability computations. We verified
this method in pouring simulation experiments. The learning
performance with neural networks outperformed that of
locally weighted regression. The amount of spilled materials
was reduced. In addition, we used redundant and/or non-
informative states to investigate the feature extraction prop-
erty of (deep) neural networks. Although the state dimension-
ality changed from 16 to 47, the learning performance did
not change. The early results of the robot experiments using
a PR2 were also positive. Therefore we think this framework,
learning dynamics with deep neural networks and planning
with stochastic DDP, is a promising solution to reinforcement
learning problems.

APPENDIX

Here we derive E[frelu(x)] and var[frelu(x)] for x ∈ R,
x ∼ N (µ, σ2), and frelu(x) = max(0, x). Let G denote a
Gaussian function: G(x;µ, σ2) = 1

σ
√
2π

exp(− (x−µ)2

2σ2 ). The
expectation and variance are:

E[frelu(x)] =

∫ ∞

−∞
max(0, x)G(x;µ, σ2)dx, (25)

=

∫ ∞

0

x

σ
√
2π

exp(− (x− µ)2

2σ2
)dx, (26)

var[frelu(x)]

=

∫ ∞

−∞
(max(0, x)− ȳ)2G(x;µ, σ2)dx, (27)

=

∫ ∞

0

(x− ȳ)2G(x;µ, σ2)dx+

∫ 0

−∞
ȳ2G(x;µ, σ2)dx,

(28)

where ȳ = E[frelu(x)]. Thus we can solve these computa-
tions by finding this integral:

I =

∫ ∞

0

(ax2 + bx+ c) exp(− (x− µ)2

2σ2
)dx, (29)

where a, b, c are constants. We change the variable as z =
x−µ√
2σ

, which gives:

I ′ =

∫ ∞

− −µ√
2σ

(αz2 + βz + γ) exp(−z2)dz, (30)

where I =
√
2σI , α = 2aσ2, β =

√
2σ(2aµ + b), γ =

aµ2 + bµ+ c. Using the Gaussian integral formulas,∫
exp(−z2)dz =

√
π

2
erf(z), (31)∫

z exp(−z2)dz = −1

2
exp(−z2), (32)∫

z2 exp(−z2)dz =

√
π

4
erf(z)− z

2
exp(−z2), (33)

we can compute I ′ and I . The result is:

I = σ2(aµ+ b)X +

√
πσ√
2
(a(µ2 + σ2) + bµ+ c)(1 + E),

(34)

where X = exp(− µ2

2σ2 ), and E = erf( µ√
2σ

). Using this
result, we can compute Eq. (26) and (28), which gives
Eq. (11) and (12) respectively.
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